If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-155=0
a = 2; b = 14; c = -155;
Δ = b2-4ac
Δ = 142-4·2·(-155)
Δ = 1436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1436}=\sqrt{4*359}=\sqrt{4}*\sqrt{359}=2\sqrt{359}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{359}}{2*2}=\frac{-14-2\sqrt{359}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{359}}{2*2}=\frac{-14+2\sqrt{359}}{4} $
| 2x-5x=5x+9 | | 0.5^4-3x=8^2x+1 | | 2x–6=3x–8 | | 8÷x=6÷x | | 8b-3=2b+4 | | -6(9x+5)-3+4x=-408=x | | 9=3b+2 | | 5(2t+1)-8t+4=19 | | 4(2x+3)+3x=10 | | 4(x+2)=4(2x+3)+4x | | -0.2(4x+3)=0.2(5x-3) | | 2x+94=60 | | B=500-30m | | 0.1(q+2)+0.22q=3.72 | | 0.I(q+2)+0.22q=3.72 | | p=-1.5 | | -2n-6n-7n+5n=12+7 | | -0.2(x+4)-0.1x=-2.6 | | 12^(4x)=8 | | 0.07(q-3)-0.8q=-0.15 | | 12^4x=8 | | 1.9s+0.2=-0.13s+2.23 | | (4/3)x-6=(7/3)x+8 | | 1.57a+1.2=2a-3.53 | | -0.2s-0.37=-0.54s-4.11 | | -3(4x+3)+4(6x+1)=434 | | -4v+2(v+7)=32 | | 80=(2x+30) | | -0.1(z+1)-0.25z=3.75 | | 4x+12+8x-24=36 | | 8p-7=12+4p | | $4n^2$–36=0 |